2 research outputs found

    Memory-based adaptive sliding mode load frequency control in interconnected power systems with energy storage

    Get PDF
    This paper presents a memory-based adaptive sliding mode load frequency control (LFC) strategy aimed at minimizing the impacts of exogenous power disturbances and parameter uncertainties on frequency deviations in interconnected power systems with energy storage. First, the dynamic model of the system is constructed by considering the participation of the energy storage system (ESS) in the conventional decentralized LFC model of a multiarea power system. A disturbance observer (DOB) is proposed to generate an online approximation of the lumped disturbance. In order to enhance the transient performance of the system and effectively mitigate the adverse effects of power fluctuations on grid frequency, a novel memory-based sliding surface is developed. This sliding surface incorporates the estimation of the lumped disturbance, as well as the past and present information of the state variables. The conservative assumption about the lumped disturbance is eased by considering the unknown upper bound of the disturbance and its first derivative. Based on the output of the proposed DOB, an adaptive continuous sliding mode controller with prescribed H performance index is introduced. This controller ensures that the sliding surface is reachable and guarantees asymptotic stability of the closed-loop system. The controller design utilizes strict linear matrix inequalities (LMIs) to achieve these objectives. Finally, the applicability and efficacy of the proposed scheme are verified through comparative simulation cases. Autho

    Decentralized disturbance observer-based sliding mode load frequency control in multiarea interconnected power systems

    Get PDF
    The load frequency control (LFC) problem in interconnected multiarea power systems is facing more challenges due to increasing uncertainties caused by the penetration of intermittent renewable energy resources, random changes in load patterns, uncertainties in system parameters and unmodeled system dynamics, leading to a compromised reliability of power systems and increasing the risk of power outages. In responding to this problem, this paper proposes a decentralized disturbance observer-based sliding mode LFC scheme for multiarea interlinked power systems with external disturbances. First, a reduced power system order is constructed by lumping disturbances from tie-line power deviations, load variations and the output power from renewable energy resources. The disturbance observer is then designed to estimate the lumped disturbance, which is further utilized to construct a novel integral-based sliding surface. The necessary and sufficient conditions to determine the tuning parameters of the sliding surface are then formulated in terms of linear matrix inequalities (LMIs), thus guaranteeing that the resultant sliding mode dynamics meet the H∞{H_\infty } performance requirements. The sliding mode controller is then synthesized to drive the system trajectories onto the predesigned sliding surface in finite time in the presence of a lumped disturbance. From a practical perspective, the merit of the proposed control method is to minimize the impact of the lumped disturbance on the system frequency, which has not been considered to date in sliding mode LFC design. Numerical simulations are illustrated to validate the effectiveness of the proposed LFC strategy and verify its advantages over other approaches
    corecore